Assessing Student Proficiency in a Reading Tutor That Listens
نویسندگان
چکیده
This paper reports results on using data mining to extract useful variables from a database that contains interactions between the student and Project LISTEN’s Reading Tutor. Our approach is to find variables we believe to be useful in the information logged by the tutor, and then to derive models that relate those variables to student’s scores on external, paper-based tests of reading proficiency. Once the relationship between the recorded variables and the paper tests is discovered, it is possible to use information recorded by the tutor to assess the student’s current level of proficiency. The major results of this work were the discovery of useful features available to the Reading Tutor that describe students, and a strong predictive model of external tests that correlates with actual test scores at 0.88.
منابع مشابه
Automatically Assessing Oral Reading Fluency in a Computer Tutor that Listens
Much of the power of a computer tutor comes from its ability to assess students. In some domains, including oral reading, assessing the proficiency of a student is a challenging task for a computer. Our approach for assessing student reading proficiency is to use data that a computer tutor collects through its interactions with a student to estimate his performance on a human-administered test ...
متن کاملThe Sounds of Silence: Towards Automated Evaluation of Student Learning in a Reading Tutor that Listens
We propose a paradigm for ecologically valid, authentic, unobtrusive, automatic, data-rich, fast, robust, and sensitive evaluation of computer-assisted student performance. We instantiate this paradigm in the context of a Reading Tutor that listens to children read aloud, and helps them. We introduce inter-word latency as a simple prosodic measure of assisted reading performance. Finally, to va...
متن کاملTraining a confidence measure for a reading tutor that listens
One issue in a Reading Tutor that listens is to determine which words the student read correctly. We describe a confidence measure that uses a variety of features to estimate the probability that a word was read correctly. We trained two decision tree classifiers. The first classifier tries to fix insertion and substitution errors made by the speech decoder, while the second classifier tries to...
متن کاملWhen Listening is Not Enough: Potential Uses of Vision for a Reading Tutor that Listens
Speech offers a powerful avenue between user and computer. However, if the user is not speaking, or is speaking to someone lse, what is the computer to make of it? Project LISTEN’s Reading Tutor is speech-aware software that strives to teach children to read. Because it is useful to know what the child is doing when reading, we are investigating some potential uses of computer vision. By record...
متن کاملImproving Story Choice in a Reading Tutor that Listens
This abstract summarizes how we improved task choice – picking a story to read – in successive versions of a Reading Tutor that listens to elementary students read aloud. We wanted to motivate children to spend time on the Reading Tutor by giving them some choice in what to read, without spending too much time picking stories. We also wanted them to read plenty of new text, so as to build vocab...
متن کامل